机器学习个人笔记完整版v4.2
机器学习个人笔记完整版v4.2
1.
第 1 周
1.1.
1.2 机器学习是什么?
1.2.
一、 引言(Introduction) 1.1 欢迎
1.3.
1.3 监督学习
1.4.
1.4 无监督学习
1.5.
二、单变量线性回归(Linear Regression with One Variable) 2.1 模型表示
1.6.
2.2 代价函数
1.7.
2.3 代价函数的直观理解 I
1.8.
2.4 代价函数的直观理解 II
1.9.
2.5 梯度下降
1.10.
2.6 梯度下降的直观理解
1.11.
2.7 梯度下降的线性回归
1.12.
2.8 接下来的内容
1.13.
三、线性代数回顾(Linear Algebra Review) 3.1 矩阵和向量
1.14.
3.2 加法和标量乘法
1.15.
3.3 矩阵向量乘法
1.16.
3.4 矩阵乘法
1.17.
3.5 矩阵乘法的性质
1.18.
3.6 逆、转置
2.
第 2 周
2.1.
四 、 多 变 量 线 性 回 归 (Linear Regression with Multiple Variables)
2.2.
4.1 多维特征
2.3.
4.2 多变量梯度下降
2.4.
4.3 梯度下降法实践 1-特征缩放
2.5.
4.4 梯度下降法实践 2-学习率
2.6.
4.5 特征和多项式回归
2.7.
4.6 正规方程
2.8.
4.7 正规方程及不可逆性(可选)
2.9.
五、Octave 教程(Octave Tutorial) 5.1 基本操作
2.10.
5.2 移动数据
2.11.
5.3 计算数据
2.12.
5.4 绘图数据
2.13.
5.5 控制语句:for,while,if 语句
2.14.
5.6 向量化
2.15.
5.7 工作和提交的编程练习
3.
第 3 周
3.1.
六、逻辑回归(Logistic Regression) 6.1 分类问题
3.2.
6.2 假说表示
3.3.
6.3 判定边界
3.4.
6.4 代价函数
3.5.
6.5 简化的成本函数和梯度下降
3.6.
6.6 高级优化
3.7.
6.7 多类别分类:一对多
3.8.
七、正则化(Regularization) 7.1 过拟合的问题
3.9.
7.2 代价函数
3.10.
7.3 正则化线性回归
3.11.
7.4 正则化的逻辑回归模型
4.
第 4 周
4.1.
第八、神经网络:表述(Neural Networks: Representation) 8.1 非线性假设
4.2.
8.2 神经元和大脑
4.3.
8.3 模型表示 1
4.4.
8.4 模型表示 2
4.5.
8.5 特征和直观理解 1
4.6.
8.6 样本和直观理解 II
4.7.
8.7 多类分类
5.
第 5 周
5.1.
九、神经网络的学习(Neural Networks: Learning) 9.1 代价函数
5.2.
9.2 反向传播算法
5.3.
9.3 反向传播算法的直观理解
5.4.
9.4 实现注意:展开参数
5.5.
9.5 梯度检验
5.6.
9.6 随机初始化
5.7.
9.7 综合起来
5.8.
9.8 自主驾驶
6.
第 6 周
6.1.
十 、 应 用 机器 学 习 的建 议 (Advice for Applying Machine Learning)
6.2.
10.1 决定下一步做什么
6.3.
10.2 评估一个假设
6.4.
10.3 模型选择和交叉验证集
6.5.
10.4 诊断偏差和方差
6.6.
10.5 归一化和偏差/方差
6.7.
10.6 学习曲线
6.8.
10.7 决定下一步做什么
6.9.
十一、机器学习系统的设计(Machine Learning System Design) 11.1 首先要做什么
6.10.
11.2 误差分析
6.11.
11.3 类偏斜的误差度量
6.12.
11.4 查全率和查准率之间的权衡
6.13.
11.5 机器学习的数据
7.
第 7 周
7.1.
十二、支持向量机(Support Vector Machines) 12.1 优化目标
7.2.
12.2 大边界的直观理解
7.3.
12.3 数学背后的大边界分类(可选)
7.4.
12.4 核函数 1
7.5.
12.5 核函数 2
7.6.
12.6 使用支持向量机
8.
第 8 周
8.1.
十三、聚类(Clustering) 13.1 无监督学习:简介
8.2.
13.2 K-均值算法
8.3.
13.3 优化目标
8.4.
13.4 随机初始化
8.5.
13.5 选择聚类数
8.6.
十四、降维(Dimensionality Reduction) 14.1 动机一:数据压缩
8.7.
14.2 动机二:数据可视化
8.8.
14.3 主成分分析问题
8.9.
14.4 主成分分析算法
8.10.
14.5 选择主成分的数量
8.11.
14.6 重建的压缩表示
8.12.
14.7 主成分分析法的应用建议
9.
第 9 周
9.1.
十五、异常检测(Anomaly Detection) 15.1 问题的动机
9.2.
15.2 高斯分布
9.3.
15.3 算法
9.4.
15.4 开发和评价一个异常检测系统
9.5.
15.5 异常检测与监督学习对比
9.6.
15.6 选择特征
9.7.
15.7 多元高斯分布(可选)
9.8.
15.8 使用多元高斯分布进行异常检测(可选)
9.9.
十六、推荐系统(Recommender Systems) 16.1 问题形式化
9.10.
16.2 基于内容的推荐系统
9.11.
16.3 协同过滤
9.12.
16.4 协同过滤算法
9.13.
16.5 向量化:低秩矩阵分解
9.14.
16.6 推行工作上的细节:均值归一化
10.
第 10 周
10.1.
十七、大规模机器学习(Large Scale Machine Learning) 17.1 大型数据集的学习
10.2.
17.2 随机梯度下降法
10.3.
17.3 小批量梯度下降
10.4.
17.4 随机梯度下降收敛
10.5.
17.5 在线学习
10.6.
17.6 映射化简和数据并行
10.7.
十八、应用实例:图片文字识别(Application Example: Photo OCR)
10.8.
18.1 问题描述和流程图
10.9.
18.2 滑动窗口
10.10.
18.3 获取大量数据和人工数据
10.11.
18.4 上限分析:哪部分管道的接下去做
10.12.
十九、总结(Conclusion) 19.1 总结和致谢
Powered by
GitBook
机器学习个人笔记完整版v4.2
第 6 周