2.8 接下来的内容
参考视频: 2 - 8 - What_'s Next (6 min).mkv
在接下来的一组视频中,我会对线性代数进行一个快速的复习回顾。如果你从来没有接 触过向量和矩阵,那么这课件上所有的一切对你来说都是新知识,或者你之前对线性代数有 所了解,但由于隔得久了,对其有所遗忘,那就请学习接下来的一组视频,我会快速地回顾 你将用到的线性代数知识。
通过它们,你可以实现和使用更强大的线性回归模型。事实上,线性代数不仅仅在线性 回归中应用广泛,它其中的矩阵和向量将有助于帮助我们实现之后更多的机器学习模型,并 在计算上更有效率。正是因为这些矩阵和向量提供了一种有效的方式来组织大量的数据,特 别是当我们处理巨大的训练集时,如果你不熟悉线性代数,如果你觉得线性代数看上去是一 个复杂、可怕的概念,特别是对于之前从未接触过它的人,不必担心,事实上,为了实现机 器学习算法,我们只需要一些非常非常基础的线性代数知识。通过接下来几个视频,你可以 很快地学会所有你需要了解的线性代数知识。具体来说,为了帮助你判断是否有需要学习接 下来的一组视频,我会讨论什么是矩阵和向量,谈谈如何加 、减 、乘矩阵和向量,讨论逆 矩阵和转置矩阵的概念。
如果你十分熟悉这些概念,那么你完全可以跳过这组关于线性代数的选修视频,但是如 果你对这些概念仍有些许的不确定,不确定这些数字或这些矩阵的意思,那么请看一看下一 组的视频,它会很快地教你一些你需要知道的线性代数的知识,便于之后编写机器学习算法 和处理大量数据。