2.6 梯度下降的直观理解

参考视频: 2 - 6 - Gradient Descent Intuition (12 min).mkv

在之前的视频中,我们给出了一个数学上关于梯度下降的定义,本次视频我们更深入研 究一下,更直观地感受一下这个算法是做什么的,以及梯度下降算法的更新过程有什么意义。 梯度下降算法如下图:

j :j

j

J ()

描述:对 θ 赋值,使得 J(θ)按梯度下降最快方向进行,一直迭代下去,最终得到局部最 小值。其中 α 是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的 方向向下迈出的步子有多大。

对于这个问题,求导的目的,基本上可以说取这个红点的切线,就是这样一条红色的直 线,刚好与函数相切于这一点,让我们看看这条红色直线的斜率,就是这条刚好与函数曲线 相切的这条直线,这条直线的斜率正好是这个三角形的高度除以这个水平长度,现在,这条 线有一个正斜率,也就是说它有正导数,因此,我得到的新的 θ1,θ1 更新后等于 θ1 减去一

个正数乘以 α。

这就是我梯度下降法的更新规则:

j :j

j

J ()

让我们来看看如果 α 太小或 α 太大会出现什么情况:

如果 α 太小了,即我的学习速率太小,结果就是只能这样像小宝宝一样一点点地挪动, 去努力接近最低点,这样就需要很多步才能到达最低点,所以如果 α 太小的话,可能会很 慢 因为它会一点点挪动,它会需要很多步才能到达全局最低点。

如果 α 太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又

移动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越

来越远,所以,如果 α 太大,它会导致无法收敛,甚至发散。 现在,我还有一个问题,当我第一次学习这个地方时,我花了很长一段时间才理解这个

问题,如果我们预先把 θ1 放在一个局部的最低点,你认为下一步梯度下降法会怎样工作? 假设你将 θ1 初始化在局部最低点,在这儿,它已经在一个局部的最优处或局部最低点。 结果是局部最优点的导数将等于零,因为它是那条切线的斜率。这意味着你已经在局部最优

点,它使得 θ1 不再改变,也就是新的 θ1 等于原来的 θ1,因此,如果你的参数已经处于局部 最低点,那么梯度下降法更新其实什么都没做,它不会改变参数的值。这也解释了为什么即 使学习速率 α 保持不变时,梯度下降也可以收敛到局部最低点。

我们来看一个例子,这是代价函数 J(θ)。

我想找到它的最小值,首先初始化我的梯度下降算法,在那个品红色的点初始化,如果 我更新一步梯度下降,也许它会带我到这个点,因为这个点的导数是相当陡的。现在,在这 个绿色的点,如果我再更新一步,你会发现我的导数,也即斜率,是没那么陡的。随着我接 近最低点,我的导数越来越接近零,所以,梯度下降一步后,新的导数会变小一点点。然后 我想再梯度下降一步,在这个绿点,我自然会用一个稍微跟刚才在那个品红点时比,再小一 点的一步,到了新的红色点,更接近全局最低点了,因此这点的导数会比在绿点时更小。所

以,我再进行一步梯度下降时,我的导数项是更小的,θ1 更新的幅度就会更小。所以随着 梯度下降法的运行,你移动的幅度会自动变得越来越小,直到最终移动幅度非常小,你会发 现,已经收敛到局部极小值。

回顾一下,在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的

幅度,这是因为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接

近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是 梯度下降的做法。所以实际上没有必要再另外减小 α。

这就是梯度下降算法,你可以用它来最小化任何代价函数 J,不只是线性回归中的代价 函数 J。

在接下来的视频中,我们要用代价函数 J,回到它的本质,线性回归中的代价函数。也 就是我们前面得出的平方误差函数,结合梯度下降法,以及平方代价函数,我们会得出第一 个机器学习算法,即线性回归算法。